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Compelling evidence suggests that low-density lipo- 
protein (LDL) is oxidized by cells within the arterial 
intima and that, once oxidized, it is profoundly 
atherogenic. The precise mechanism(s) by which cells 
promote the oxidation of LDL in vivo are not known; 
in vitro, however, oxidation of LDL can be enhanced by 
a number of differing mechanisms, including reaction 
with free and protein-bound metal ions, thiols, reactive 
oxygen species, lipoxygenase, myeloperoxidase and 
peroxynitrite. This review is concerned with the 
mechanisms by which cells enhance the oxidation of 
LDL in the presence of transition metals; in particular, 
the regulation, pro- and anti-oxidant consequences, 
and mechanism of action of cellular thiol production 
are examined, and contrasted with thiol-independent 
oxidation of LDL in the presence of transition metals. 

Keywords: Oxidized low-density lipoprotein, thiol, transition 
metal, atherosclerosis 

INTRODUCTION 

The hypothesis that oxidized low-density lipo- 
protein (OxLDL) is responsible for the deposition 
of lipid within macrophages in early athero- 
sclerotic lesions was first propounded over ten 

years ago.'" The concept was immediately 
appealing. While the increased atherosclerotic 
risk associated with elevated serum concentra- 
tions of low-density lipoprotein (LDL) was estab- 
lished,"] it was clear that native LDL did not 
cause macrophage foam cell f~rmation.'~] Oxida- 
tion of LDL confers recognition by macrophage 
scavenger receptors, leading to uncontrolled 
uptake of this particle, lipid deposition, and foam 
cell formation in vit~o. '~,~'  The presence of LDL 
oxidation products in atherosclerotic 
implies this process also occurs in vim. It has 
since become increasingly clear that OxLDL 
exerts a diverse array of pro-atherogenic effects, 
including induction of colony-stimulating fac- 
tors,'" monocyte chemotactic protein-lL9' and 
proinflammatory cytokines,[lol increasing mono- 
cyte adhesion to endothelial cells.["] 

However, despite extensive research effort, the 
mechanism of LDL oxidation in the artery wall 
remains controversial."2"31 That the parameters 
of LDL oxidation in vitro, are clearly defined is 

*Tel.: +44(0)171-794 0500 Ext. 4963. Fax: +44(0)171-794 9645. E-mail: agraham@rfhsm.ac.uk 

611 

Fr
ee

 R
ad

ic
 R

es
 D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
L

ib
ra

ry
 o

f 
H

ea
lth

 S
ci

-U
ni

v 
of

 I
l o

n 
11

/1
7/

11
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



612 A. GRAHAM 

due largely to the work of Hermann Esterbauer 
and his colleagues during the late 1980s and early 

I first met Hermann in 1990, at a Lipid 
Group/Society for Free Radical Research Joint 
Colloquium of the Biochemical Society, held in 
Aberdeen. As a lipid biochemist, newly recruited 
to the field of free radical biology, I was intrigued 
by the concept of LDL oxidation resistance and its 
modulation by lipid-soluble antioxidants, which 
Hermann presented at this meeting.”” However, 
we soon became much more familiar with the 
published work from Esterbauers’ laboratory, in 
our attempts to apply the same kind of rigour to 
our cellular studies of LDL oxidation. In parti- 
cular, the absolute dependence of these experi- 
ments upon the presence of transition metals 
meant much could be inferred from Esterbauers’ 
classic studies of LDL oxidation by copper 
ions,”P191 and our aims refined to an investiga- 
tion of the mechanisms by which cells facilitate 
the oxidation of LDL by transition metals. 

An understanding of the biochemical mecha- 
nisms underlying the formation of OxLDL in viva 
could indicate important potential targets for drug 
intervention.[’01 It seems unlikely, given the high 
concentrations of plasma antioxidants, that LDL 
oxidation occurs in the circulation; indeed, levels 
of lipid hydroperoxides found in circulating 
lipoproteins are extremely low, and levels of 
plasma lipophilic antioxidants are not reduced in 

It was suggested, therefore, 
that LDL oxidation might occur within the inti- 
mal tissue of the artery wall, where antioxidants 
could become depleted by, and the LDL exposed 
to, oxidant stress exerted by cells therein.r201 
Recent evidence, however, suggests human 
atherosclerotic plaque contains both oxidized 
lipids and relatively large amounts of a-tocoph- 
erol and ascorbate, indicating the atherosclerotic 
artery is not, overall, an antioxidant-deficient 
tissue.In But local depletion of antioxidants 
mediated, for example, by clusters of macro- 
phages within the vessel wall, could result in 
heterogeneous arterial antioxidant defences. The 
composition, and in particular the transition metal 
content, of such putative cellular microenviron- 

ments,[’O1 are critical factors when attempting to 
assess the relevance of cellular mechanisms of 
LDL oxidation derived from studies performed 
in vitro. 

CELLULAR OXIDATION OF LOW-DENSITY 
LIPOPROTEIN IN W R O  

Although the oxidative mechanism(s) responsi- 
ble for cellular oxidation of LDL in vivo are not 
clearly established, several candidate oxidizing 
species, involving both transition metaldepen- 
dent and -independent reactions, have been 
identified.[’*’71 Specific markers of oxidation 
elicited by lip~xygenase,[’~’ myeloperoxi- 
dase[’4rz51 and per~xynitrite[’~~~] have been iden- 
tified in human atherosclerotic lesions, and imply 
that these species contribute to LDL oxidation 
in vim; their roles in cellular oxidation of LDL 
in vitro have been the subject of recent excellent 
reviews.120~’81 

Further, these enzymatic mechanisms are not 
the predominant mechanismW by which cells 
oxidize LDL in vitro; cells which do not possess 
lipoxygenase, myeloperoxidase, or nitric oxide 
synthase activities can efficiently oxidize 
LDL.[‘9r301 Indeed, virtually all of the cell types 
associated with atherosclerotic lesions, including 
endothelial cells,1311 smooth muscle cells,r321 lym- 
phocyte~,’~~] platelets[341 and monocyte/macro- 
phages,1351 and some which are not, such as 
HepG2 hepatoma cells,[361 can oxidize LDL 
in vitro. Probably the most important factor, and 
the one generating criticism of cellular oxidation 
s t ~ d i e s , ” ~ ~ ’ ~ ~ ’ ~ ~ ’ ~ ~  is that in order to elicit the gross 
oxidative and structural changes conferring 
macrophage scavenger receptor recognition, 
nearly all of these systems have an absolute 
requirement for trace amounts of transition 
metals to be present in the cell culture medium. 
This is usually supplied by use of serum-free 
Hams F10 r n e d i ~ m , [ ~ ~ - ~ ~ ~  or by use of Hanks’ 
buffer supplemented with transition 
Human monocytes, stimulated with opsonized 
zymosan, are reported to oxidize LDL in the 
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THIOL AND LDL OXIDATION 613 

absence of transition metals;[391 however, recent 
data suggest this oxidation is due to the contam- 
inating iron ions in the zymosan preparation~.'~'' 
'Minimally' or mildly oxidized LDL (mmLDL), 
which is recognized by the native LDL receptor, 
can be formed in the absence of exogenously 
supplied transition metals, and in the presence of 

however, the mechanisms by which 
co-cultures of endothelial and smooth muscle 
cells generate mmLDL are not understood. This 
review focuses on the mechanisms by which 
arterial cells can enhance the oxidation of LDL 
by transition metals, and, in particular, the 
evidence that cellular production of free thiols 
accelerates the oxidation of LDL. 

CELLULAR THIOL PRODUCTION 
AND LDL OXIDATION 

Thiols, including protein-bound thiols, undergo 
auto-oxidation in the presence of transition 
metals and oxygen, generating oxygen- and 
sulphur-centred Two initial obser- 
vations, made over a decade ago, suggested a role 
for sulphur-containing molecules in cellular 
oxidation of LDL. Millimolar concentrations of 
reduced glutathione, and other compounds with 
free -SH groups, promote the oxidation of LDL in 
the absence of cells in Hams F10 medium.[521 
Further, oxidation of LDL by arterial smooth 
muscle cells required the presence of both 
L-cystine and free transition metals.1321 More 
recently, Sparrow and O l s ~ e w s k i I ~ ~ ~  demon- 
strated the dependency of LDL oxidation by 
rabbit endothelial cells and mouse peritoneal 
macrophages, on cellular production of free thiols 
(predominantly L-cysteine) in Hams F10 culture 
medium. Thiol production, and LDL oxidation, 
were inhibited by glutamate, which blocks 
L-cystine uptake by the x; transporter.[531 

Stimulated primary human mon~cytes, '~~] and 
human (THP-I) macro phage^['^*^^^ oxidize LDL 
by a mechanism which is largely dependent on 
L-cystine, and requires a threshold level of thiol 
production.r551 Accumulation of intracellular 

ceroid, an insoluble fluorescent pigment found 
within lipid-laden macrophage foam cells, is also 
dependent upon L-~ys t ine .~~~]  Intriguingly, non- 
arterial cells, such as HepG2 hepatoma cells,[361 
enhance LDL oxidation by a thiol-dependent 
mechanism, suggesting any cell type which 
actively recycles L-cystine to free thiol will 
accelerate LDL oxidation in the presence of 
transition metals. In contrast, cells which do not 
exhibit 'thiol recycling', such as rat A10 smooth 
muscle cells,[541 oxidize LDL at a much slower 
rate. It is noteworthy that cellular LDL oxidation 
is not completely inhibited in the absence of thiol 
recycling, or following the removal of L-cystine 
from the culture r n e d i ~ r n [ ' ~ ~ ~ * ~ ~ ~  arguing that 
thiol-independent pathways exist by which cells 
enhance the effects of transition  metal^'^^,^^] (see 
below). Significantly, cellular thiol production is 
not sufficient to initiate oxidation of freshly 
isolated LDL (<9 h), but does enhance the oxida- 
tion of older  preparation^,^^^] implying endo- 
genous 'seeding' lipid peroxides are required 
for thiols to facilitate LDL oxidation. 

REGULATION OF CELLULAR THIOL 
PRODUCTION AND LDL OXIDATION 

Release of Free Thiols 

Inflammatory conditions, associated with the 
pathogenesis of atherosclerosis, can induce thiol 
recycling by macrophages. Thus, release of acid- 
soluble free thiols from macrophages is stimu- 
lated by tumour necrosis factor (TNF) and by 
lipopolysaccharide (LPS);[58,591 our own data 
suggest induction of thiol release by human 
(THP-1) monocytes can be induced or inhibited, 
by protein kinase C (PKC) agonists and inhibi- 
tors, respectively.[601 Supra-physiological concen- 
trations of insulin and glucose may also enhance 
thiol production by human monocytes.1611 

L-Cystine Uptake 

Induction of thiol release by arterial cells requires 
increased uptake of L-cystine, usually mediated 
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614 A. GRAHAM 

by the xi- transporter.[621 Transport of L-cystine is 
the requisite for glutathione synthesis, and is 
induced by oxidized LDL,[631 oxidative stress,r641 
sodium ar~enite,[~~' by TNF-a and LpS,[661 and by 
activation of PKC.1601 Thus, uptake of L-cystine 
and release of free thiols show concerted 
responses to identical stimuli.[5wo7661 In general, 
cellular responses to oxidative stress include 
increased synthesis of cellular antioxidants, like 
g~utathione;[~~' release of free thiols may also 
be an extracellular defence mechanism, pro- 
viding protection against immune oxidative 
injury.[5859,681 particular, release of free thiols 
can supply lymphocytes, which cannot trans- 
port L-cystine, with L-cysteine for glutathione 
synthesis.[58c59r681 Thus, it is only in the presence 
of transition metals that thiol recycling causes 
paradoxically damaging effects, leading to 
increased oxidative damage and LDL oxidation. 

Thiol-Dependent LDL Oxidation 

Thiol recycling and cellular LDL oxidation show 
similar regulatory control. TNF-a enhances LDL 
oxidation by macrophages and endothelial 
cells;r691 similarly, pathological concentrations of 
insulin, insulin-like growth factor-1 (IGF-1) and 
glucose enhance the oxidation of LDL by human 
monocytes.[611 Stimulation of PKC is required for 
oxidation of LDL by human monocytes, via a 
mechanism which is partially superoxide-inde- 
pendent.[701 However, perhaps the most convinc- 
ing demonstration that thiol recycling, and LDL 
oxidation, can both be induced by oxidative stress 
exerted in vivo, comes from a study using human 
umbilical vein endothelial cells (HUVECs) iso- 
lated from smokers. In the presence of free iron, 
these cells oxidize LDL, via a mechanism which is 
strongly thiol-dependent, to a much greater 
degree than those isolated from non-~mokers.'~~' 
Importantly, W E C s  isolated from smokers had 
higher intracellular levels of glutathione than 
those isolated from non-smokers, highlighting 
the fact that this pathway is central to the supply 
of cellular  antioxidant^.'^" 

The effects of cellular thiols on LDL oxidation 
may be further enhanced by the microenviron- 
ment created by the cells themselves. Activated 
macrophages, found clustered within athem- 
sclerotic lesions,[72r731 can acid@ their extracel- 
lular space by extrusion of Ht17*] or lactic acid.[75' 
Thiol-enhancement of LDL oxidation, in the 
presence of iron ions, is accelerated at acidic 

possibly by increasing the solubility of 
Fe3+ or the efficiency of LDL modificationrm 
(reviewed in Ref. 1781). 

THIOL-INDEPENDENT REDUCTION 
OF TRANSITION METALS BY CELLS 

Human monocyte-derived macrophages,IM1 
macrophagesr2937~38~3~551 and rat A10 smooth 
muscle cells[541 all exhibit a small, but sigruhcant, 
amount of LDL oxidation which requires the 
presence of transition metals, but is not thiol- 
dependent. Recent evidence shows macrophages 
can directly reduce both iron and copper ions in 
the absence of L-cystine, and enhance LDL 

A proportion of cell-mediated 
reduction of transition metals is due to direct 
trans-plasma membrane electron transport 
(lTMET),[381 which can be regulated by hormones, 
cytokines and growth factors.r791 The relative con- 
tributions of thiol-dependent and -independent 
pathways to LDL oxidation in Hams F10 medium 
can only be inferred by studies in the presence or 
absence of L-cystine~29~32,53r541 it is likely that the 
rate of LDL oxidation will be determined by the 
availability of redox-active metals, a process 
augmented by cellular production of thiolsr201 
(see below). 

MECHANISM OF LDL OXIDATION IN 
HAMS F10 MEDIUM: THIOLS AND 
IRON IONS 

Thiols (RSH) may enhance the oxidation of lipids 
(LH) within LDL, in the presence of free iron (the 
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THIOL AND LDL OXIDATION 615 

predominant metal in Hams F10 medium) by a 
number of differing mechanisms. These include 
generation of thiyl radicals,[42r431 production of 
superoxide, hydrogen peroxide, or hydroxyl 
 radical^,[^^-^^] and reduction of transition metal 
ions[5or511 (reactions (l)-(lO)). Differing thiol 
species may also exert effects by differing 
mechanisms.[s01 The following reactions can 
occur following thiol ionisation: RSH H 

RS- + H+ (pK, 8.4). 

RS- + Fe3+ + RS' + Fe2+ 
RS' + LH + RSH + L' 

RS- + RS' + RSSR'- 
RSSR'- + 0 2  + RSSR + 0, 

0; + Fe3+ tf 0 2  + Fez+ 
20, + 2H+ -+ H202 + 0 2  

(1) 
(2) 
(3) 
(4) 

(5) 
(6)* 

Fez+ + H202 + Fe3+ + OH' + OH- 
Fe2+ + LOOH + Fe3+ + LO' + OH- 

(7) 

(8) 
LO' + LH + L' + LOH 

L' + 0 2  -+ LOO' 
(9 ) 

(10) 

*(Reaction markedly accelerated in the pres- 
ence of superoxide dismutase.) 

Thiyl Radicals 

Formation of thiyl radicals (1) can initiate lipid 
p e r o ~ i d a t i o n ~ ~ ~ , ~ ~ ]  b y abstraction of hydrogen 
from polyunsaturated fatty acids (21, or by forma- 
tion of sulphonyl radicals which can form 
adducts with double bonds.[421 The reactivity of 
thiyl radicals towards unsaturated fatty acids is 
increased by an increased distance between the 
reactive S' and the ionic groups of the attacking 
molecule, decreased numbers of ionic functions, 
and increased lipophilicity of the attacking thiyl 
radical.[431 However, these properties of thiyl 
radicals contrast directly with the demonstrated 
abilities of cysteine and cysteinyl derivatives to 
catalyze oxidation of LDL in Hams F10 medium: 
cysteine > homocysteine > cysteinylglycine > 
glutathione > N-a~etylcysteine.'~~] This lack of 

correlation with thiyl radical reactivity implies 
initiation of lipid peroxidation by these species is 
probably not the major mechanism by which cells 
facilitate the oxidation of LDL; an argument 
confirmed and extended by Santanam and 
Partha~arathy'~~' who demonstrated cellular 
generation of L-cysteine was not sufficient to 
initiate LDL oxidation in freshly isolated LDL. 

Superoxide 

Thiol autoxidation results in increased produc- 
tion of oxidizing species (4-7), such as super- 

which can promote the oxidation of 
LDL in the presence of transition metals,['l' or 
redox cycle Fe3' to Fe2+ (5). Production of super- 
oxide by smooth muscle cells is L-cystine depen- 
dent,[321 associating superoxide production and 
thiol-dependent LDL oxidation. However, thiol- 
enhanced LDL oxidation is, at best, only partially 
dependent upon superoxide radicals. Superoxide 
dismutase (SOD) could only partially inhibit the 
oxidation of LDL by c y ~ t e i n e [ ~ ~ ' ~ ~ ~  and homo- 
~ysteine '~~]  in the presence of iron"41 or copper"" 
and was ineffective against glutathione- 
enhanced oxidation of LDL.'54rs01 While Jessup 
et aZ.[821 have argued SOD may be an inappro- 
priate test for the involvement of superoxide 
radicals in cell-mediated oxidation, due to its 
metal-chelating properties and to the develop- 
ment of a pro-oxidant activity by heat inactiva- 
tion, it is difficult to argue that a lack of effect 
due to SOD does not imply a lack of super- 
oxide involvement per se in thiol-enhanced LDL 
oxidation. 

Superoxide dismutation generates hydrogen 
peroxide (6)  and, via the Fenton reaction (71, 
hydroxyl radicals, both of which could enhance 
LDL oxidation. Indeed, it is possible that the lack 
of effect due to SOD was caused by the alternate 
generation of these highly reactive species. How- 
ever, both cell- and thiol-enhancement of LDL 
oxidation are unaffected by the addition of 
catalase, or the hydroxyl radical scavenger, 
rnannit~l;[~"~~'  further, inhibition of cellular 
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616 A. GRAHAM 

catalase, by aminotriazole, does not increase 
oxidation of LDL by macrophages.r541 

Reduction of Transition Metals 

The half-life of thiol autoxidation, and the 
susceptibility of a range of cysteinyl derivatives 
to iron-catalysed oxidation, correlate strongly 
with the extent of LDL oxidation in Hams F10 
medium.[54i These findings, together with the 
comparative lack of firm evidence for involve- 
ment of initiating thiyl or superoxide radicals, 
lead to the conclusion that the primary mechan- 
ism by which thiols propagate the oxidation of 
LDL is by reduction of Fe3+ to Fe2f(l).[541 
The reaction of lipid hydroperoxides with Fe2' 
is much faster (k2 N 1.5 x 103M-'s-') than their 
reaction with Fe3+, thereby accelerating the 
decomposition of lipid peroxides within the 
LDL particle, and generating aLkoxyl and peroxyl 
radicals which propagate lipid peroxidation 
(8-10). The mechanism by which LDL oxidation 
is facilitated by cellular thiols appears, therefore, 
to rely upon redox cycling of free iron, the 
presence of 'seeding' levels of lipid peroxides, 
and is essentially propagative in nature. 

THIOLS AND COPPER IONS 

Copper and iron are known to oxidatively modify 
LDL by differing mechanisms: iron-dependent, 
in contrast to copper dependent, oxidation of 
LDL, requires the presence of a physiological 
reductant such as enzymatically generated 
superoxide or a free t h i ~ l . [ ~ , ' ~ ~  These differing 
requirements are due to the fact that LDL can 
mediate the reduction of copper, but not iron 
ions,[85' and are reflected in the greater resistance 
of LDL core lipids to iron-oxidation in the absence 
of a suitable reductant.['6' Studies performed 
with thiols, such as cysteine, homocysteine and 
glutathione, in the presence of iron or copper 
ions, have yielded apparently paradoxical pro- 
and anti-oxidant roles for thiol compounds.154r80i 
Thus, homocysteine[80"n and c y ~ t e i n e ~ ~ ~ , ~ ~ , ~ ~ '  

are reported to i r~h ib i t ' ~~ '~~~ '~ ]  or promote[8o' 
copper oxidation of LDL. In contrast, studies 
performed using or Hams F10 culture 

indicate thiols promote, or 
do not affect[571 LDL oxidation. Most, if not 

of these conflicts were resolved by a 
recent study indicating thiol compounds enhance 
the oxidation of LDL by iron, but effectively 
inhibit copper oxidation of LDL.['81 Copper- 
dependent oxidation of LDL was effectively 
inhibited by glutathione > homocysteine > 
cysteine, while iron-dkpendent LDL oxidation 
stimulated by cysteine > homocysteine > 
glutathione.["' Interestingly, while cystine and 
homocystine disulphides did not stimulate or 
inhibit LDL oxidation, glutathione disulphide 
(GSSG) and methionine, the Smethylated deri- 
vative of homocysteine, effectively inhibited LDL 
oxidation by copper ions.[88' While free thiols can 
act as free radical scavengers,f891 the mechanism 
of GSSG-mediated inhibition is unknown and 
could be due to a non-thiol specific chelation of 
either Cu2+ or Cu+.["' It can be predicted, there- 
fore, that cellular thiol production will accelerate 
iron-oxidation of LDL, but exert repressive effects 
in the presence of copper. In contrast, direct 
reduction of transition metals by macrophages 
(see above) will enhance both copper-, and iron-, 
dependent LDL oxidation;[37381 thiol-dependent 
and -independent pathways of cell-mediated 
LDL oxidation may, therefore, exert mutually 
antagonistic effects in the presence of copper ions. 

medium[29-36,40,54,761 

RELEVANCE OF THIOL 
RECYCLING IN W O  

Cellular oxidation of LDL can be enhanced 
by t h i ~ l - d e p e n d e n t [ ~ " ~ ~ ~ ~ ~ ~ ~  and -independent 
mechanis~ns~~~'~ '~ (Figure l), which can be 
independently regulated, and are critically 
dependent upon the presence of iron[29~3253rsp1 
and/or But d o atherosclerotic 
lesions contain free iron or copper? Catalytically 
active free iron and copper ions are normally not 
found in the plasma or interstitial fluid, but 
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THIOL AND LDL OXIDATION 617 

LO' + OH' 
FIGURE 1 Proposed pathways by which cells can reduce transition metals, and accelerate LDL oxidation. TPMET, trans- 
plasma membrane electron transport; RSH, free thiol; RSSR, thiol disul hide; LOOH, lipid hydroperoxide; M", reduced 
transition metal (eg. Fe2+, Cu+); Mn+', oxidized transition metal (e.g. Fe', Cu2'); GSH, intracellular glutathione (reduced); 
GSSG, intracellular glutathione (oxidized); NADP+/NADPH, nicotinamide adenine dinucleotide phosphate (oxidized/ 
reduced, forms respectively). 

bound to proteins such as transferrin,Igol albu- 
minr9i~ and caerulopla~min,[~~~ and are unlikely 
to be present in normal arterial tissue. Epidemio- 
logical studies examining the relationship be- 
tween iron stores and risk for atherosclerosis 
have proved i n c o n c l u ~ i v e ; ~ ~ ~ ~ ~ ~  similarly, prema- 
ture atherosclerosis is not a prominent feature of 
iron- or copper-overload in haemachromat~sis[~~~ 
or Wilson's respectively. 

However, metal ions may become available 
locally, under pathological conditions such as the 
cellular necrosis occurring in advanced athero- 
sclerotic lesions. Gruel extracted from human 
aortic atherosclerotic lesions can contain signifi- 
cant amounts of copper (0-28pM) or iron ions 
(0-7 pM), stimulate lipid peroxidation, generate 
hydroxyl radicals,[981 and catalyze oxidation of 
LDL by macro phage^.[^^] Catalytically active iron 
and copper are also released from mechanically 
disrupted early lesions and from normal arterial 
walls.[Ioo1 However, human atherosclerotic mate- 
rial does not contain elevated levels of o-tyrosine, 
a specific marker of copper-mediated oxidative 
damage, arguing against a role for free metal 
ions as catalysts of LDL oxidation in the artery 

Alternatively, protein-bound metal ions 
may be involved in enhancing cellular oxidation 
of LDL;1102-1041 recent evidence indicates intact 
caeruloplasmin can exert pro-oxidant effects,[1021 
and enhance the oxidation of LDL by monocytes, 

ulation of free iron levels in cells may also play a 
role in the formation of oxidized lipids in 
atherosclerotic tissue: atherosclerosis-susceptible 
strains of mice, fed a high cholesterol diet, had 
increased levels of intracellular iron relative to 
resistant strains."051 

In conclusion, the pro- or anti-oxidant conse- 
quences of cellular thiol production appear 
inextricably linked with the putative catalytic 
action of free or protein-bound transition metals 
within the arterial intima. Lack of information on 
the composition, and transition metal content, of 
cellular microenvironments within the vessel 
wall hinder our assessment of the physio- 
logical relevance of this cellular mechanism; 
direct evidence is needed to demonstrate the 
transition-metal dependent link between 
induction of thiol recycling by inflammatory 
mediators, and lipoprotein oxidation in vivo. 

endothelial and smooth muscle  cell^."^^"^^^ Re g- 
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